Evolution, 2025, 0(0), 1-11
https://doi.org/10.1093/evolut/qpaf205
Advance access publication 10 October 2025

Original Article OXFORD

Overwintering drives rapid adaptation in Drosophila with
potential costs to insecticide resistance
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Abstract

Winter is a formidable challenge for ectotherms that inhabit temperate climates. The extent to which winter conditions drive rapid adaptation,
and separately, how selection from novel stressors affects adaptation to winter, remain poorly understood. Here, we use replicate populations of
Drosophila melanogasterin a field experiment to test (i) whether winter conditions drive rapid adaptation and (ii) for trade-offs between insecticide
resistance and overwintering survival. Following a longitudinal field experiment investigating the evolution of insecticide resistance, we tracked
subsequent evolution during an overwintering period. In unexposed control populations, we detected parallel evolutionary shifts indicative of
adaptation to winter conditions in multiple traits, including body size and fecundity. Additionally, populations that had evolved insecticide resis-
tance during the growing season were more likely to go extinct than control populations. Further, both control and resistant populations showed
patterns of lower resistance following the winter period, suggestive of a trade-off between overwintering success and insecticide resistance.
Rapid evolutionary responses to winter conditions, and potential costs of resistance, provide important context for understanding overwintering
performance in temperate insects with implications for pest management and ecosystem services.
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Introduction 2009), there is little known about how overwintering selec-
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vironmental change and the maintenance of biodiversity ¢ fate of overwintering ectotherm populations 1s largely

(Exposito-Alonso et al., 2022; Urban et al., 2016). There dependent on both physiology and demography. The phys-

has been considerable work to understand the ecological iological mechanisms enabling ectotherms to survive chal-

. . . . . S lenging winter conditions are well-documented (Sinclair et
drivers of rapid adaptation, including biotic factors such gmng o
as predation, competition, and mutualism (Li et al., 2021; al., 2003; Teets et al., 2023; Toxopeus & Sinclair, 2018). In
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ied as drivers of rapid adaptation with direct implications for ~ 3tOnS Per year are strongly influenced by seasonal Huctu-

responses to climate change (Bradshaw & Holzhapfl, 2010; ations in temperature (Altermatt, 2010; Roff, 1980; Shpa.k
Huey et al., 2021; Radchuk et al., 2019). In terrestrial ec- et al., 2010; Tauber & Tauber, 1981). These demographic

. . . hifts are important for ecological interactions (Markow &
totherms, there is extensive study on the ecology and physi- 5™ p &
ological challenges associated with winter (Denlinger & Lee, OGrady, 2008; Pgrmesan, 2,0065 Thagkeray etal., 2016) but
2010; Marchand, 1987; Sinclair et al., 2003), but the role of also ff)r the capacity for rapl.d adaptation, because they alter
winter conditions in driving rapid adaptation has received gCenet}c dlvclz)rsny ofzg(())gulimons (Bgrrett & SThlluter, 2005 3
comparatively little attention (but see Campbell-Staton et rozier & Dwyer, ). Across winter, populations can be

1. 2017: Marshall et al.. 2020: Will; 1..2015). Fur- subject to severe bottlenecks (Chen et al., 2006; Kinnison &
o ; varshall et al, s wilams etas, ). Fur Hairston, 2007; Lawton et al., 2022) as both demographic

effects of genetic drift and the prevalence of adaptive physi-
ological traits likely play a role in overwintering persistence.

There is evidence of physiological responses to co-
occurrence of low temperature and natural stressors such
as desiccation or pathogen exposure (Le Bourg et al., 2009;

ther, there are even fewer studies with sufficient population-
level replication to detect parallel changes indicative of adap-
tation to winter conditions. Although there is clear evidence
of ecological and demographic effects of winter conditions,
including population declines and life-history trade-offs be-

tween winter stress tolerance and summer reproduction ; e .
(Boulétreau-merle & Fouillet, 2002; Marshall & Sinclair, reviewed in Sinclair et al., 2013; Zhang et al., 2011). How-
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ever, how the emergence of novel, strong, directional
selective agents—such as those imposed
anthropogenically—interacts with natural stressors to
shape ecological and evolutionary outcomes (e.g., in-
secticide resistance and low temperature) is less clear
(ffrench-Constant & Bass, 2017; Kliot & Ghanim, 2012).
For example, there could be positive correlational selection
and genetic covariance between insecticide resistance and
overwintering survival (Lande & Arnold, 1983; Service &
Rose, 19835; Sinervo & Svensson, 2002). Alternatively, there
could be antagonism of insecticide resistance and overwin-
tering rendering resistant populations less likely to survive
the overwintering period (McKenzie, 1994; McKenzie et al.,
1990), possibly due to pleiotropy and/or fitness trade-offs
(Crow, 1957; Roush & McKenzie, 1987). Any correlations
are important considerations for agriculture, as there is a
need to understand the mechanisms that facilitate or con-
strain insecticide resistance evolution (Baker et al., 2007;
Sparks et al., 2012).

The common fruit fly (Drosophila melanogaster, Meigen
1830) makes an excellent system to study natural selec-
tion across winter. Beyond the exceptional molecular and
population genetic tools and amenability as a model or-
ganism, D. melanogaster is among the species most studied
in overwintering contexts including responses to low tem-
perature (Hoffmann et al., 2003a; MacMillan & Sinclair,
2011; Overgaard et al., 2014; Rako & Hoffman, 2006;
Schmidt et al., 2005). Despite a tropical ancestral origin,
local populations of D. melanogaster can overwinter even
at high latitudes, though they may use human dwellings
or compost piles as overwintering refugia (Ives, 1970).
Mortality in winter can exceed 90%, though field survival
data are scarce (Ives, 1970; Izquierdo, 1991; Mitrovski &
Hoffman, 2001; Nunez et al., 2024). Spatial patterns of
genomic variation suggest that high-latitude populations
exhibit patterns of local adaptation and maintain rela-
tively high effective population sizes overwinter (Cogni et
al., 2015; Collett & Jarman, 2001; Ives, 1970; Machado
et al., 2021). Thus, it is uncertain how evolution across
winter allows D. melanogaster to maintain genetic varia-
tion and expand successfully in spring despite population
bottlenecks.

Low temperature responses of flies show patterns of lat-
itudinal variation in putative winter adaptations (Gibert et
al., 2001; Hoffman et al., 2003b; Kellerman et al., 2012;
Overgaard et al., 2014). These include traits for maintain-
ing homeostasis under subzero conditions (Denlinger & Lee,
2010; Hoffman et al., 2003a; Sinclair et al., 2003; Teets et
al.,2023), higher reproductive diapause incidence (Collett &
Jarman, 2001; Schmidt et al., 20035), greater stress tolerance
(Hoffman, 2010; MacMillan & Sinclair, 2011) due to life-
history allocation trade-offs (Stearns, 1998), and larger body
size based on laboratory and field studies (Angilletta, 2009;
Jamesetal., 1997; Partridge et al., 1994). Fall fly populations
exhibit phenotypic (Behrman et al., 2015) and genomic sig-
natures associated with summer selection (Bergland et al.,
2014). Given that insecticide treatments are not commonly
applied in winter, insecticide-resistant fall populations that
overwinter as adults would face selective pressure from low
temperatures while potentially incurring costs for carrying
resistance (McKenzie, 1994; Roush & McKenzie, 1987).
This could mean that resistant alleles decline in frequency

Prileson et al.

across winter, an important factor for pest population con-
trol measures.

Assessment of rapid evolutionary adaptation and poten-
tial tradeoffs requires replicate populations that undergo se-
lection in parallel; however, such studies are often carried out
in controlled laboratory conditions (but see Hoffman et al.,
2003a; Sgro & Hoffman, 1998). Here, we use a field exper-
iment to assess both the magnitude of overwintering adap-
tation and the potential for trade-offs or covariation with
adaptation of insecticide resistance. Specifically we ask the
following questions: (1) Does an overwintering period drive
adaptation as measured by parallel genetic change across
populations? (2) Is there a trade-off between selection dur-
ing the overwintering period and prior selection for insec-
ticide resistance? We hypothesized that strong overwinter
mortality drives adaptation for greater overwintering per-
formance (Izquierdo, 1991; Mitrovski & Hoffman, 2001).
Therefore, we predicted that flies that successfully overwin-
ter would evolve greater body size, reduced fecundity, and
greater starvation tolerance. For our second question, we
define a trade-off as the observed negative association be-
tween evolved resistance and phenotypic measures including
survival: a broader definition of the term “trade-off” that de-
scribes the outcomes from rather than the mechanistic causes
of a trade-off (Garland et al., 2022). We expected that over-
wintering survival would negatively covary with the prior
evolution of resistance to an insecticide (McKenzie, 1994;
Miyo et al., 2000). We predicted that overwintering selec-
tion would reduce insecticide resistance and, in turn, that re-
sistant populations would have lower survival and reduced
performance of cold tolerance traits.

Replicated field experiments can feature environmental
conditions that closely resemble those found in nature. They
also allow for larger population sizes than is typically fea-
sible in laboratory evolution experiments, increasing evolu-
tionary realism. In this vein, we established D. melanogaster
populations into 40 replicated outdoor mesocosms in the
summer and tested for parallel phenotypic evolution across
independent populations. With a subset of these origi-
nal populations, we then used repeated common garden
rearing following an overwintering period to test whether
overwintering drove adaptation and for any negative cor-
relation between insecticide resistance and overwintering
performance.

Materials and methods

Multigenerational experiment and fly populations

We tested fly populations as part of a multigenerational
selection experiment following previously described pro-
tocols outlined in Rudman et al. (2022). Drosophila
melanogaster populations were founded from 100 DGRP
lines (Drosophila Genetic Reference Panel; Mackay et al.,
2012) with 5 males and 10 females from each line placed
into a population cage. This “hybrid swarm” population
was allowed to mate, facilitating recombination, and grow
at density-controlled conditions for nine generations prior
to release outdoors. This breeding design decreases linkage
disequilibrium through recombination of the founder haplo-
types (Weller et al., 2021). Populations were reared for ap-
proximately nine generations in outdoor mesocosms located
45.729 N, —122.633 W (from here on “orchard”) from July
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17 until October 28, 2023. Throughout the experiment, all
populations were fed a modified Bloomington recipe media.

Fly populations included 10 cages fed control media (from
here on “control” populations with an approximate aver-
age population size of 43,000 flies across the season) and
10 populations fed exclusively media treated with a 0.0375
ug L~! concentration of the organic insecticide spinosad
(Entrust; Dow AgroSciences, Indianapolis, IN, USA) (av-
erage seasonal population of 7,000 flies). This concentra-
tion corresponds with the lethal dose at which 50% of
flies saw mortality based on dose-response assays conducted
on founder flies under standardized laboratory conditions
(see supplementary information in Shahmohamadloo et al.,
2025). Spinosad is a widely used insecticide for fruit crops
and is applied prior to and during fruit ripening (Scott et
al., 2024). Spinosad targets nicotinic acetylcholine neuronal
membrane receptors (nAChR), leading to neuronal overex-
citation and larval mortality (Martelli et al., 2022; Perry
et al., 2007; Salgado, 1998). Five of 10 insecticide-exposed
populations went extinct during the growing season. Five
persisted—possibly via evolutionary rescue through the evo-
lution of spinosad resistance from standing genetic varia-
tion (Perry et al., 2007, 2021; hereafter “resistant” popu-
lations). While resistance to spinosad is likely polygenic, it
might include variation in target-site proteins, though the
magnitude of evolved resistance in this study is modest com-
pared to what can be observed in agricultural settings (Gress

& Zalom, 2019).

Overwintering experimental design

At the end of the growing season, we collected eggs from
eight outdoor control and five outdoor resistant popula-
tions, reared flies indoors under common garden conditions
for two generations, and conducted fall phenotypic assays
(Figure 1). From these common garden-reared populations,
we collected approximately 2,000 adult flies per population
for the overwintering experiment.

The orchard experiences a relatively mild temperate win-
ter typical of the western Pacific Northwest, USA, but it still
presents challenging conditions for D. melanogaster includ-
ing occasional subfreezing air temperatures (Figure S1). To
provide a favorable environment, we used 5-L clear plastic
containers with a small, screened opening to allow aeration
and added layers of hay pellets, ash wood chips, and cot-
ton for insulation. We then transferred flies from each inde-
pendent population and treatment type into an overwinter-
ing container and then placed the overwintering flies into an
outdoor rearing cage. After 5 weeks in the outdoor cage, we
transferred the flies to a greenhouse and then an indoor in-
cubator to simulate a spring-like phenology cue in both tem-
perature and photoperiod. Following the overwintering and
spring acclimation period, we expanded post-overwintering
flies for two generations and began our phenotyping trials
(see Figure 1 and supplemental material for full details and
timing of the experimental design).

Experimental constraints influenced aspects of the design,
including use of containers, relatively brief overwintering pe-
riod, and a lack of thermal refugia. While these choices do
impact realism, they were largely made to balance severity
of the overall winter environment populations experienced
and the necessity of containing individuals in a way that
facilitated collection following overwintering. There is ev-

idence that D. melanogaster changes dietary preference in
fall to polyunsaturated fats to enhance overwinter survival
(Brankatschk et al., 2018), but our use of consistent diet pre-
cluded any change. Regardless of design decisions, fly pop-
ulations still experienced strong selection from temperature
and photoperiodic effects consistent with winter in a high-
latitude environment.

Phenotypic assays

To assess temporal evolutionary responses during the grow-
ing season, eggs were collected from each replicate meso-
cosm in density-controlled 200-ml bottles at regular inter-
vals (August, September, and October) and reared in com-
mon garden conditions as described earlier. The following
phenotypes were assayed per replicate mesocosm: (1) Insec-
ticide resistance measured as survivorship to adulthood on
0.0375 pug L' concentration spinosad: the proportion of
eggs (30 eggs per vial) that survived to adulthood in three
replicate vials; (2) fecundity: the total eggs laid by five fe-
males over 3 days, measured in each of three replicate bot-
tles, and scored following Gabidulin & Rudman (2025); (3)
starvation tolerance: the time to starvation for three repli-
cate vials containing 10 males each on agar-only media; and
(4) adult body size: measured as the average dry mass of
three pools of five females, dried at 55 °C for 24 hr. We re-
peated these phenotypic assays for the post-overwintering
period but also included a fifth measure: chill coma recovery
time (CCRT), a static measure of cold tolerance widely used
in assessing low temperature responses in D. melanogaster
(Gibert & Huey, 2001). We immersed 15 female flies in three
replicates per cage in an ice water bath to induce chill coma
at 0° C for 2 hr following Macdonald et al. (2004) and Rako
and Hoffman (2006). We manually scored recovery at 20 °C
as the time to the minute when flies were able to right them-
selves.

Statistical analyses

To test adaptation across winter, we compared phenotypic
measures from the populations collected in October (from
here on “fall”) and following the overwintering period (from
here on “post-overwintering”). We modeled each pheno-
typic measure as the response variable, time point as our
fixed-effect predictor variable, and considered cage (i.e., in-
dividual population) as a random effect. To assess a poten-
tial trade-off in resistance, we tested for differences in sur-
vival and evolutionary divergence in traits across time points
between outdoor-reared resistant and control populations.
Here, each phenotypic measure was the response variable,
time point and population type were treated as fixed ef-
fects along with their interaction, and cage was treated as
a random effect. Since CCRT was only measured in post-
overwintering populations, we tested cold tolerance between
overwintered control and resistant populations in a model
with population type as the predictor variable and cage as a
random effect.

To model each phenotypic measure for each question,
we used generalized linear mixed-effects models constructed
with the glmmTMB function from the glmmTMB package
(Brooks et al., 2017; see supplemental material for details
on each model). Model diagnostics were conducted using
the simulateResiduals and testDispersion functions from the
DHARMa package (Hartig & Lohse, 2022). Our model
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Figure 1. Timeline of the overwintering experimental design. At the end of the growing season, we collected approximately 800 eggs per cage from
eight outdoor control and five outdoor resistant populations. \We then reared flies indoors under common garden conditions for two generations and
then conducted phenotyping for the fall time point. From this same generation of flies, we collected approximately 2,000 adults per population and
placed them in overwintering containers with a non-spinosad-treated food resource held within a large 8-m? outdoor rearing cage. After 5 weeks in

the outdoor overwintering trial, we transferred the flies to a greenhouse and then an indoor incubator to simulate spring-like phenology cues in both
temperature and photoperiod and to encourage reproduction (see Table S1 for rearing conditions). During the overwintering and spring, four populations
(three resistant and one control) were extirpated, leaving a final sample size of two resistant and seven control populations. We then collected 800 eggs
from these overwintered flies and reared them under common garden conditions. We expanded these post-overwintering flies for two generations at a
standard low density (1,500 eggs/300 ml of media), and 3-5 days after eclosion, we conducted phenotyping assays of fecundity, body size, cold
tolerance, insecticide resistance, and starvation tolerance (see main text and Table S2 for details).

contrasting control and resistant populations was unable to
meet assumptions of homoscedasticity, and efforts to cor-
rect for this did not improve model fits. We opted to retain
original model designs but deemphasized the focus on sig-
nificance relative to effect size. To do so, we prioritized ef-
fect size interpretation in the results but still report p-values
from significance tests for completeness. We determined sig-
nificance of the predictors using log-likelihood ratio tests in
the Anova function with the type = “III” argument from the
car package (Fox & Weisberg, 2019) and calculated effect
sizes as Hedges’ g using the hedges_g function from the ef-
fectsize package (Ben-Shachar et al., 2020). All analyses were
conducted in R version 4.3.3 (R Core Team, 2024).

Results

Field survival of overwintering flies

All populations experienced severe mortality of >98% from
a starting population of 2,000 adult flies (Figure 2), with
1.67% of control and 0.62% of resistant flies surviving the
overwinter trial. Overall, 60% of resistant and 12.5% of
control populations went extinct during the overwintering
period and there was a non-significant trend of population
type on survival (x2 = 5.35, p = 0.0689).

Adaptation across winter

We found evidence for parallel temporal evolution in most
phenotypes in control populations. Compared to fall pop-

ulations, post-overwintering populations exhibited smaller
dry mass (Figure 3A; estimate = —0.398, SE = £0.0606;

2 =43.2, p < 0.0001), greater fecundity (Figure 3B; es-
timate = 0.515, SE = £0.0543; x? = 136.7, p < 0.0001),
and decreased spinosad resistance (Figure 3D; estimate =
—24.9, SE = £2.08; x* = 174.7, p < 0.0001). There was
no difference in starvation tolerance between fall and post-
overwintering populations (Figure 3C; estimate = 3.57; SE
=42.85; x> =1.56,p = 0.212).

Potential for trade-offs between winter conditions
and insecticide resistance

To test for trade-offs between overwintering selection and
insecticide resistance, we compared phenotypic perfor-
mance in fitness-associated traits between fall and post-
overwintering control and resistant populations. Extinction,
particularly the high proportion observed in resistant popu-
lations, reduced our statistical power for this contrast. Given
this unbalanced contrast and overlapping phenotypic distri-
butions, we interpret the results with the effect size differ-
ence between population types (Hedges’ g: control minus re-
sistant; with 95% confidence intervals) at both time points.
We report these values to show the magnitude of the differ-
ences in groups but note that biological inference is limited
due to these constraints. For completeness, we also report
the model outputs of predictors along with associated test
statistics and p-values (Tables S3 and S4).
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A B

N
o

ik

fos)
w
n

w
o

g

=}
)
a

Dry mass (mg)
xS
'S
Fecundity (egg/female/day)
]
o

=R,
[=>]

Population

@ Control
Resistant

(9]
o]
=]

D

-~
[&)]

-~
o
[=2]
o

o2}

@
N
o

[=2]
o

Average time of death (hrs)
-
Resistance (survival %)
[\~
o

S

o
[33]

Fall Post-overwintering Fall Post-overwintering
Time point Time point
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raw data values for each independent population’s phenotypic measure. (A) Average dry mass in milligrams. (B) Average fecundity across a 3-day assay.
(C) Starvation tolerance measured as average time to mortality. (D) Spinosad resistance measured as the percent egg-to-adult survival on insecticide
media. Note: In panel A, raw data points fall within the size of the post-overwintering resistant mean point.
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We found that for both body size and fecundity, the
phenotypic difference between control and resistant pop-
ulations increased after overwintering. Specifically, control
populations showed a greater reduction in dry mass and
a greater increase in fecundity relative to resistant pop-
ulations (dry mass: Figure 3A; control minus resistant
Hedges’ g fall = —0.78 [-1.49, —0.05], post-overwintering
= —1.05 [-1.97, —0.12]; fecundity: Figure 3B; control mi-
nus resistant Hedges’ g fall = 0.41 [0.04, 0.078], post-
overwintering = 1.42 [0.85, 1.98]). To directly test for a neg-
ative correlation between winter conditions and spinosad
resistance, we compared egg-to-adult survival on spinosad
for both population types between time points. We found
that the magnitude of greater survival for resistant over
control populations declined in post-overwintering popula-
tions (Figure 3D; control minus resistant Hedges’ g fall =
—3.52 [—4.10, —2.94], post-overwinter = —1.90 [-2.30,
—1.49]). We did not find any differences in starvation toler-
ance (Figure 3C; Table S3; control minus resistant Hedges’
g fall = —0.29 [-0.99, 0.41]; overwinter = —0.37 [—1.25,
0.52]) nor were there differences in CCRT between pop-
ulation types following the winter period (Figure S2 and
Table S4; control minus resistant Hedges’ g post-overwinter
= —0.42 [-0.87, 0.04]).

Discussion

Winter can lead to dramatic declines in temperate insect pop-
ulations, and the mechanisms that allow population persis-
tence, including rapid adaptation, are poorly understood.
Additionally, it is important to understand how insecticide-
resistant populations respond to winter selection and if sur-
vival negatively covaries with resistance. From overwintered
D. melanogaster in outdoor mesocosms, we detected evi-
dence for adaptation in multiple phenotypic traits across
the winter period, and a putative trade-off between the evo-
lution of insecticide resistance and winter survival. These
findings demonstrate that winter conditions can pose strong
selective pressures and suggest that this selection may act
against spinosad-resistant genotypes. Our findings have im-
plications for insecticide use in pest management, impacts to
non-target species, and overwintering evolution in a chang-
ing climate.

Adaptation across winter

In the outdoor-reared control populations, there was re-
peated evolution of multiple traits but not always in the pre-
dicted direction. From both insect thermal physiology and
field data of Drosophila (Chown & Nicolson, 2004; James
et al., 1997), we expected that post-overwintering popu-
lations would evolve larger body size and reduced fecun-
dity when compared to fall populations, but instead the re-
verse was true. One explanation could be that many post-
overwintering Drosophila females can carry male gametes
within their spermatheca from fall matings (Boulétreau-
merle & Fouillet, 2002; Collet & Jarman, 2001). Previous
work suggests that fall populations are shaped by several
generations of selection during the summer and early fall,
while spring populations reflect selection across the winter
(Behrman et al., 2015; Machado et al., 2021). Thus, females
who successfully overwinter could produce maladapted off-
spring (Collet & Jarman, 2001).
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Alternatively, body size and fecundity could respond in
a counter-gradient fashion to the winter period. Larger
body size can covary with lower temperature (i.e., Partridge
& Coyne, 1997; Partridge et al., 1994) and fecundity
can trade off with stress tolerance and diapause inci-
dence, a pattern found in D. melanogaster across latitu-
dinal gradients (Angilletta, 2009; Denlinger & Lee, 2010;
Schmidt & Conde, 2006). However, reverse clines have
been documented in nearly equal numbers in arthropods
(Blanckenhorn & Demont, 2004; reviewed in Shelomi,
2012). In a counter-gradient scenario, overwintering selec-
tion in high-latitude D. melanogaster might favor traits
such as greater fecundity or a rapid change into and out
of reproductive diapause (Schmidt & Paaby, 2008) as this
could allow populations to jumpstart and access resources
more quickly when spring conditions become favorable
(Bachmann et al., 2020; Conover et al., 2009).

Potential costs for overwintering-resistant
populations

The evolution of resistance during the growing season was
associated with reduced overwinter performance that is sug-
gestive of a trade-off. First, a greater number of resistant fly
populations went extinct across winter relative to control
populations. Second, the difference in survival on spinosad
between resistant and control populations decreased from
fall to post-overwintering when exposed to spinosad, sug-
gesting that resistant flies that survived the winter might
have reduced resistance. In our study, we likely observed
polygenic resistance adaptation, but target-site-mediated re-
sistance could have unique pleiotropic effects on fitness in-
cluding greater oxidative damage (Weber et al., 2012), de-
creased longevity, altered lipid environments, and vision loss
(Martelli et al., 2022; Perry et al., 2015). These detrimen-
tal, sublethal effects of resistance could negatively interact
with low temperature stress of overwintering, leading to
the greater mortality we observed (ffrench-constant & Bass,
2017). While these patterns are consistent with costs of re-
sistance, the small number of surviving resistant populations
(n = 2) limits our statistical power and precludes strong in-
ferences. We further note that the observed decline in re-
sistance following overwintering could also reflect tempo-
ral variation in assay conditions rather than evolutionary
change (Gray et al., 20235; Stone et al., 2020) and so we in-
terpret these patterns cautiously.

Surprisingly, we did not find the expected differences in
cold and starvation tolerance between resistant and control
populations as drivers of lower overwintering survival. One
possibility is that our measure of cold tolerance (CCRT)
did not fully capture variation in low temperature perfor-
mance (Andersen et al., 2015; Garcia et al., 2020). Although
reduced survival in resistant populations might have been
driven by variation in membrane fluidity (Brankatschk et al.,
2018), since this is a factor in CCRT (Teets et al., 2023) that
was consistent between population types, we think this is less
likely. We interpret these phenotypic results carefully, how-
ever, as these findings might be due to survivorship bias and
the reduced sample size for overwintered resistant popula-
tions limited the power to detect trait differences.

The genomic architecture of adaptation to seasonal vari-
ation has been well-studied in D. melanogaster, with sev-
eral field studies and experiments demonstrating a largely
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polygenic basis of rapid adaptation (Bergland et al., 2014;
Machado et al., 2021; Rudman et al., 2022). Future work
determining the genomic basis of adaptation to overwinter-
ing, including the prominence of structural variants (many
cosmopolitan inversions were present in the founder popu-
lation used for this experiment; Table S5; Machado et al.,
2021; Nunez et al., 2024), could elucidate any fluctuating
selection associated with temporal variation and insecticide
exposure.

Interactions and implications of overwintering,
resistance, and pest management

Overall, there is little known about interactions between in-
secticide resistance and overwintering insect biology, and the
evidence to date is mixed. In the Colorado potato beetle
(Leptinotarsa decemlineata, Say 1824), a major agricultural
pest, resistant populations have shown stimulated invest-
ment in fat body tissue that increase metabolic fuel and in-
herit epigenetic effects that elicit general stress responses that
increase overwintering success (Brevik et al., 2018; Lehmann
et al., 2014; Sinclair, Sinclair, 2015). In other studies, how-
ever, resistant beetles have exhibited lower overwintering
survival due to maladaptive behavioral responses (Ferro et
al., 1999; Piiroinen et al., 2013). Antagonistic responses be-
tween winter stress and insecticide resistance have been ob-
served in insecticide-resistant green peach aphids (Myzus
persicae, Sulzer 1776) and northern house mosquitos (Culex
pipiens, Linnaeus 1758), which showed lower survival over-
winter and differential success in finding overwintering refu-
gia, respectively (Bourguet et al., 2004; reviewed in Kliot
& Ghanim, 2012). Given the limited and mixed evidence
among insect taxa, more research with population-level
replication is needed to test whether negative correlations
between winter survival and insecticide resistance impact
population dynamics of pests.

Trade-offs between overwintering and insecticide resis-
tance have important implications for both rapid adaptation
and population dynamics under climate change. If resistance
evolution is strongly temperature dependent, climate warm-
ing could substantially alter the dynamics of resistance evo-
lution (Easterling et al., 2000; IPCC, 2023; Williams et al.,
2015). One area of concern is that relaxed selection from
winter could lead to greater population-level resistance and
range expansions of overwintering pest populations. Indeed,
with milder winter conditions, resistant pests have expanded
into higher latitudes including the diamondback moth (Ma
et al., 2021), multiple tick species (Molaei et al., 2022), and
Colorado potato beetle (Piiroinen et al., 2013). Given that
winter climate change is also associated with greater vari-
ability and population decline (Sinclair et al., 2013; Williams
etal.,20135), our findings underscore the importance of mon-
itoring and managing resistance in a rapidly changing world.

Conclusion

In this study, we add important evolutionary context for
the well-studied ecology and physiology of overwintering
ectotherms. Notably for D. melanogaster, adaptation lead-
ing to population persistence (and maintenance of genetic
variation) overwinter seems to be critical for the “spring
reset” where greater fecundity can allow rapid population
growth and recolonization of resources at the start of the

next growing season (Behrman et al., 2015; Machado et al.,
2021). That winter led to greater mortality in resistant pop-
ulations demonstrates potential costs to spinosad-resistant
flies in their ability to make this same reset. More broadly,
this work has implications for understanding seasonal de-
mographics of important agricultural pollinators, manage-
ment of pest species, and rapid adaptation of ectotherms in
temperate climates.
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